Journal of Organometallic Chemistry, 92 (1975) C31–C34 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

STEREOCHEMISTRY OF INSERTION OF DISUBSTITUTED ACETYLENES INTO HYDRIDOPLATINUM(II) COMPLEXES

H.C. CLARK and C.S. WONG

Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7 (Canada) (Received March 14th, 1975)

Summary

The stereochemistry of the insertion product of acetylenes with platinum hydrides depends on (1) the electron-withdrawing capabilities of the substituents on the acetylene, (2) the nucleophilicities of the solvent and/or anion present, and (3) the reaction temperature. These observations further substantiate our proposed mechanism involving the collapse of a 4-coordinate intermediate, cis-HPt(PEt₃)₂ (acetylene)⁺, to 3-coordinate Pt(PEt₃)₂ (vinyl)⁺.

Recently it has been demonstrated that insertions of olefins and acetylenes into Pt-H and Pt-alkyl bonds are facilitated by the ready displacement of an original ligand by the substrate [1-5]. Kinetic studies have provided evidence that such reactions proceed via a 4-coordinate cationic intermediate, trans-HPt(PEt₃)₂-(Un)⁺, (e.g. Un = ethylene [6], methyl acrylate [7]), subsequent rearrangement of which yields the insertion product. It has also been suggested [7] that this rearrangement probably involves a trans $\rightarrow cis$ isomerization followed by migratory insertion leading to a 3-coordinate, 14-electron intermediate, Pt(PEt₃)₂(alkyl)⁺. We now wish to communicate the results of a stereochemical study on the insertion of acetylenes into the Pt-H bond (eqn.1).

 $(X = Cl, NO_3, solvents (as PF_6 salts))$

Pt¹¹ complexes are particularly suited to such stereochemical studies since the geometry of the resulting alkenyl complexes can readily be assigned from the various coupling constants in their ¹ H NMR spectra. Thus, a *cis* or *trans* disposition of Pt and H in the alkenyl group is determinable from the magnitude of the ³J(PtH) value [8-10]; the arrangement of the phosphine ligands is also apparent from ⁴J(PH), typically ⁴J(PH) being ca. 1.5-4 Hz for a *trans* complex [10, 11] and ca. 10 Hz for the *cis* [9]. Additional information can also be obtained from the relative intensities of the PCH₂<u>CH₃</u> quintet signals [12-14], and in favorable cases from the couplings of Pt and P with the R₁ group.

In all of the cases studied (Table 1), the alkenyl group has a *cis* disposition of Pt and H. The gross geometry about platinum, however, depends on several factors. Inspection of Table 1 shows that the formation of a *cis* isomer at platinum is favored by:

(1) Electron-withdrawing substituents in the acetylene substrate.

(2) The use of a coordinating solvent as reaction medium for cationic Pt complexes (X = solvent) and a non-polar solvent for neutral complexes (X = Cl, NO_3).

TABLE 1

STEREOCHEMISTRY OF THE REACTION HPI(PEL₃)₂X + $R_1C = CR_2 \rightarrow Pt(PEL_3)_2(R_1C = CHR_2)X^a$ AT ROOM TEMPERATURE

R	R,	x	Solvent	Gross geometry	'H NMR of visyl proton b			
					δ	J(PtH)	⁴ J(PH)	Others
CH,	Рь	NO,	MeOH	trans	6.64tb	91.5		
CH.	РЪ	C1	MeOH	trans	6.75tb	90.0		
Ph	Ph	C1~	MeOH	trans	6.92tb	98.2		
Ph	CF,	NO,	MeOH	trans	5 85tqt	102.0	1.2	³ J(HF) 9.6
РЪ	CF.	C1 ⁻¹	MeOH	trans	5.97tqt	98.5	1.2	у(HF) 9.8
Ph	CF,	NO,	benzene	trans and				_
	-	-		cus (1/5)	6 36 tdq ^C	48.5	106	³ J(HF) 9.1
CH.	соосн.	MeOD	MeOD	trans	5.90tb	95.0		
CH.	COOCH.	NO.	MeOH	trans	6.18tq	88.0		⁴ J(HH) 1.2
CH.	COOCH.	C1 ⁻	MeOH	CIS	6.22tdq	43.7	10.6	⁴ J(HH) 1.6
CH.	COOCH.	NOT	benzene	CIS	6.42tdq ^C	38.5	10.0	⁴ J(HH) 1.6
CF.	CF.	NO.	MeOH	cis	6.24tqu	56.6	9.5	³ J(HF) 9.5
CF.	CF.	C1	MeOH	CIS	5.99tqu	61.8	9.8	³ J(HF) 9.8
COOCH.	соосы.	NO.	MeOH	CIS .	6.18td	55.6	10.0	
COOCH,	COOCH,	cr-1	MeOH	C15	6.07td	60.5	10.0	
COOCH.	COOCH	CI-	CHCI,	cis				
COOCH.	COOCH.	C!	benzene	CIS				
COOCH.	COOCH,	acetone	benzene	trans	5.80њ ^а	110		
COOCH.	COOCH.	acetone	toluene	trans	5.88tb ^a	110		
COOCH.	COOCH,	acetone	CDCI,	trans	5.73tb ^d	108		
COOCH	COOCH.	acetone	acetone	trans	5.83tb d	110		
····,	····,			and cis (1/4)	5.92 Ld d	54	10	
соосн.	соосн.	MeOH	MeOH	cis	6.03td d	55	10	
COOCH,	COOCH,	MeOH	DMSO	cis	6.10td d	56	10	

^a All the neutral compounds have been isolated and correctly analysed, unless otherwise stated. ^b Spectra were recorded on HA100 in CDCl₃ unless otherwise stated. Chemical shifts (δ) are in ppm downfield from TMS and coupling constants (J) are given in Hz. Multiplicity: d = doublet, t = triplet, q = quartet, qu = quintet, b = broad. ^c Not isolated, benzene solution. ^d As PF₆ salts. Recorded on a T60 spectrometer in the solvent mentioned, isolable as the chloro complex (trans isomer: δ (vinyl H) = 5.96tt ³J(PtH) = 102.2 Hz, ⁴J(PH) = 1.6 Hz).

(3) The presence of a more strongly coordinating anion e.g. for $R_1 = CH_3$, $R_2 = COOCH_3$, the *cis* product is obtained for X = CI but the *trans* isomer when $X = NO_3$, MeOD (PF₆⁻ as anion).

The formation of a *cis* or *trans* isomer as the final product is also dependent on the reaction temperature. In reaction 1 ($R_1 = R_2 = COOCH_3$, X = solvent), carried out in MeOH or DMSO, the *cis* isomer is produced at room temperature. However, conversion to the *trans* form is complete at 50°C (1 h) in MeOH, but in DMSO requires 90°C (2 h). On the other hand, the same reaction in acetone/ toluene (1/10) which yields the *trans* isomer at room temperature has the *cis* isomer as its major product at --40°C. Similarly, traces of a *cis* product ($R_1 = CH_3$, $R_2 = Ph$, X = acetone) are also detected in reaction 1 when carried out at --10°C in acetone; subsequent isomerization to the *trans* form proceeds rapidly on raising the temperature.

It is therefore apparent that the *trans* isomer is thermodynamically more stable. The formation of the less stable *cis* product, and the conditions under which it is formed provide strong support for the previously proposed mechanism (Scheme 1) which suggests that a *trans* to *cis* isomerization of I occurs prior to insertion. Subsequent rearrangement of II yields a 14 electron 3-coordinate intermediate III. Nucleophilic attack of III before or after its isomerization to IV leads to the formation of a *cis* or *trans* alkenyl complex respectively. The formation of a *cis* or *trans* product therefore depends on the relative rates of the isomerization of III and its recombination with X. The presence of electron withdrawing R_1 and R_2 groups in the alkenyl ligand renders III more susceptible to nucleophilic attack and hence favors the formation of a *cis* complex. Similarly, the presence of stronger nucleophiles $(Cl^- > NO_3^-, DMSO > MeOH > acetone > CHCl_3 ~ toluene ~ benzene)$ leads to more rapid reaction of III with X and reduces the probability of its isomerisation to IV. Lower reaction temperatures also inhibit this isomerization, accounting for the preferential formation of the *cis* isomer at lower temperatures. This inhibition of isomerization by coordinating ligands is similar to that observed in the *cis* \rightarrow *trans* isomerization of Pt(PEt_3)₂-(*o*-tolyl)Cl [15], in which case the effect of Cl⁻ on the isomerization is also explained in terms of the involvement of '*cis*' and '*trans*' 3-coordinate intermediates.

Hence the above results provide evidence that in the reaction of acetylenes with platinum hydrides having labile leaving groups X, insertion proceeds via (1) the formation of trans-HPt(PEt₃)₂ (acetylene)⁺, (2) its trans to cis isomerization, (3) a collapse to 3-coordinate, 14 electron intermediate, $Pt(PEt_3)_2(vinyl)^+$, (4) a possible isomerization of this intermediate, and (5) a final recombination with X.

The continued financial support of the National Research Council of Canada is gratefully acknowledged.

References

- 1 H.C. Clark and H. Kurosawa, Inorg. Chem., 11 (1972) 1275.
- 2 M.H. Chisholm and H.C. Clark, Accounts Chem. Res., 6 (1973) 202.
- 3 H.C. Clark, C.R. Jablonski and K. von Werner, J. Organometal. Chem., in press.
- 4 A.J. Deeming, B.F.G. Johnston and J. Lewis, J. Chem. Soc. Dalton Trans., (1973) 1848.
- 5 H.C. Clark, C.R. Jablonski and C.S. Wong, Inorg. Chem., in press.
- 6 H.C. Clark and C.R. Jablonski, Inorg. Chem., 13 (1974) 2213.
- 7 H.C. Clark and C.S. Wong, J. Amer. Chem. Soc., 96 (1974) 7213.
- 8 B.E. Mann, B.L. Shaw and N.I. Tucker, J. Chem. Soc. A. (1971) 2667.
- 9 M.A. Bennett, G.B. Robertson, P.O. Whimp and T. Yoshida, J. Amer. Chem. Soc., 95 (1973) 3028.
- 10 T.G. Appleton, M.H. Chisholm, H.C. Clark and L.E. Manzer, Can. J. Chem., 51 (1973) 2243.
- 11 T.G. Appleton, M.H. Chisholm, H.C. Clark and K. Yasufuku, J. Amer. Chem. Soc., 96 (1974) 6600.
- 12 E.W. Bandall and D. Shaw, Mol. Phys., 10 (1965) 41.
- 13 M.J. Church and M.J. Mays, J. Chem. Soc. A, (1968) 3074.
- 14 H.C. Clark, K.R. Dixon and W. Jacobs, J. Amer. Chem. Soc., 90 (1968) 2259.
- 15 G. Farsone, V. Ricevuto, R. Romeo and M. Trozzi, J. Chem. Soc. A, (1971) 1877.